import sys
import os
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import load_model
from sklearn.model_selection import train_test_split
sys.path.append("/home/ia-serveur/ia/my_lib_functions")
#sys.path.append("/home/ia/ia/my_lib_functions")
from my_functions import *
sys.path.append('./my_plot_results')
from my_functions_plot import *
assert hasattr(tf, "function") # Be sure to use tensorflow 2.X
print('tensorflow :',tf.__version__)
first_function()
tensorflow : 2.2.0 This is the first function
dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels), train_images = 60.000, train_test = 10000
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
print('Shape train_images & train_labels',train_images.shape, train_labels.shape )
print('Shape test_images & Test_images ',test_images.shape, test_labels.shape )
Shape train_images & train_labels (60000, 28, 28) (60000,) Shape test_images & Test_images (10000, 28, 28) (10000,)
max = 0
if max > 0 :
train_images = train_images[:max]
train_labels = train_labels[:max]
else:
train_images = train_images
train_labels = train_labels
print('Shape train_images & train_labels',train_images.shape, train_labels.shape )
print('Shape test_images & Test_images ',test_images.shape, test_labels.shape )
Shape train_images & train_labels (60000, 28, 28) (60000,) Shape test_images & Test_images (10000, 28, 28) (10000,)
train_images, train_images_validate, train_labels, train_labels_validate = train_test_split(
train_images, train_labels, test_size=0.2, random_state=1)
print('Shape train_images & train_labels '
,train_images.shape, train_labels.shape )
print('Shape train_images_validate & train_labels_validate '
,train_images_validate.shape, train_labels_validate.shape )
Shape train_images & train_labels (48000, 28, 28) (48000,) Shape train_images_validate & train_labels_validate (12000, 28, 28) (12000,)
print('train_images :',train_images.shape)
print('train_labels :',train_labels.shape)
print('train_images_validate :',train_images_validate.shape)
print('train_labels_validate :',train_labels_validate.shape)
print('test_images :',test_images.shape)
print('test_labels :',test_labels.shape)
print(train_images.dtype)
print(train_labels.dtype)
train_images : (48000, 28, 28) train_labels : (48000,) train_images_validate : (12000, 28, 28) train_labels_validate : (12000,) test_images : (10000, 28, 28) test_labels : (10000,) uint8 uint8
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.subplot(1, 3, 2)
plt.imshow(train_images[0], cmap=plt.cm.binary)
plt.colorbar()
plt.grid(False)
plt.subplot(1, 3, 3)
plt.imshow(train_images[0], cmap=plt.cm.gray)
plt.colorbar()
plt.grid(False)
plt.show()
max_h = np.max(train_images[0])
min_h = np.min(train_images[0])
print('max = ',max_h)
print('min = ',min_h)
plt.hist(train_images[0].ravel(), color='gray', bins=100)
plt.title('Histogram Distribution Data')
plt.xlabel('Valeur Data')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
max = 255 min = 0
# Reshape the dataset and convert to float
X_train = train_images.reshape(-1, 784)
X_train = X_train.astype(float)
X_test = test_images.reshape(-1, 784)
X_test = X_test.astype(float)
X_train_validate = train_images_validate.reshape(-1, 784)
X_train_validate = X_train_validate.astype(float)
print('X_train.shape :',X_train.shape)
print('X_train_validate.shape :',X_train_validate.shape)
print('X_test.shape :',X_test.shape)
print('train_images.shape :',train_images.shape)
print('train_images_validate.shape :',train_images_validate.shape)
X_train.shape : (48000, 784) X_train_validate.shape : (12000, 784) X_test.shape : (10000, 784) train_images.shape : (48000, 28, 28) train_images_validate.shape : (12000, 28, 28)
train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.subplot(1, 3, 2)
plt.imshow(train_images[0], cmap=plt.cm.binary)
plt.colorbar()
plt.grid(False)
plt.subplot(1, 3, 3)
plt.imshow(train_images[0], cmap=plt.cm.gray)
plt.colorbar()
plt.grid(False)
plt.show()
max_h = np.max(train_images[0])
min_h = np.min(train_images[0])
print('max = ',max_h)
print('min = ',min_h)
plt.hist(train_images[0].ravel(), color='gray', bins=100)
plt.title('Histogram Distribution Data')
plt.xlabel('Valeur Data')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
max = 1.0 min = 0.0
Label | Class |
---|---|
0 | T-shirt/top |
1 | Trouser |
2 | Pullover |
3 | Dress |
4 | Coat |
5 | Sandal |
6 | Shirt |
7 | Sneaker |
8 | Bag |
9 | Ankle boot |
from sklearn.preprocessing import StandardScaler
print("Before Mean and std of images :", X_train.mean(), ' - ', X_train.std())
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
X_train_validate = scaler.transform(X_train_validate)
print("After Mean and std of images :", X_train.mean(), ' - ', X_train.std())
Before Mean and std of images : 72.86190226403062 - 89.9435889780605 After Mean and std of images : -2.235551124415281e-18 - 1.000000000000003
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(np.reshape(X_train[0], (28, 28)))
plt.colorbar()
plt.grid(False)
plt.subplot(1, 3, 2)
plt.imshow(np.reshape(X_train[0], (28, 28)), cmap=plt.cm.binary)
plt.colorbar()
plt.grid(False)
plt.subplot(1, 3, 3)
plt.imshow(np.reshape(X_train[0], (28, 28)), cmap=plt.cm.gray)
plt.colorbar()
plt.grid(False)
plt.hist(train_images[0])
plt.show()
max_h = np.max(X_train[0])
min_h = np.min(X_train[0])
print('max = ',max_h)
print('min = ',min_h)
print("Mean and std of data train", "- Mean= ",X_train.mean()," - std= ", X_train.std())
plt.hist(X_train[0].ravel(), color='gray', bins=100)
plt.title('Histogram Distribution Data')
plt.xlabel('Valeur Data')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
max = 6.113497281677134 min = -1.8843069488530648 Mean and std of data train - Mean= -2.235551124415281e-18 - std= 1.000000000000003
unique, counts = np.unique(train_labels, return_counts=True)
n_classes = len(unique)
Y_train = tf.keras.utils.to_categorical(train_labels, n_classes )
Y_test = tf.keras.utils.to_categorical(test_labels, n_classes )
Y_train_validate = tf.keras.utils.to_categorical(train_labels_validate, n_classes )
print('Diff Classes :',unique)
print('nb Classes :',n_classes)
print('Shape before one-hot encoding :', train_labels.shape)
print('Labels 0 :',train_labels[0])
print('Shape after one-hot encoding :', Y_train.shape)
print('Labels [0] Y_Train :',Y_train[0])
print('Labels [0] Y_Test :',Y_test[0])
print('Labels [0] Y_Train_validate :',Y_train_validate[0])
Diff Classes : [0 1 2 3 4 5 6 7 8 9] nb Classes : 10 Shape before one-hot encoding : (48000,) Labels 0 : 9 Shape after one-hot encoding : (48000, 10) Labels [0] Y_Train : [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] Labels [0] Y_Test : [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] Labels [0] Y_Train_validate : [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
targets_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
To verify that the data is in the correct format and that you're ready to build and train the network, let's display the first 25 images from the training set and display the class name below each image.
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(targets_names[train_labels[i]])
plt.show()
# Create the model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(256, activation="relu", dtype=tf.float64))
model.add(tf.keras.layers.Dense(128, activation="relu", dtype=tf.float64))
model.add(tf.keras.layers.Dense(10, activation="softmax", dtype=tf.float64))
Metrics — Used to monitor the training and testing steps.
Si les classes ou Labels sont code sur un digit (ex: 9 -> [9] alors
# Compile the model
def compile_model():
model.compile(
loss="categorical_crossentropy",
optimizer="sgd",
metrics=["accuracy"]
)
compile_model()
history = model.fit(X_train, Y_train, epochs=50,batch_size=None, validation_split=0.0, verbose=False )
history = model.fit(X_train, Y_train, epochs=50,batch_size=None, validation_split=0.0, verbose=False )
plotting_train_metrics(history, save=False, name='fig-1.png')
Train max accuracy = 99.59 % Train max loss = 2.10 %
model.summary()
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) multiple 200960 _________________________________________________________________ dense_1 (Dense) multiple 32896 _________________________________________________________________ dense_2 (Dense) multiple 1290 ================================================================= Total params: 235,146 Trainable params: 235,146 Non-trainable params: 0 _________________________________________________________________
def reset_model():
# re-Create the model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(256, activation="relu", dtype=tf.float64))
model.add(tf.keras.layers.Dense(128, activation="relu", dtype=tf.float64))
model.add(tf.keras.layers.Dense(10, activation="softmax", dtype=tf.float64))
return model
del model
model=reset_model()
compile_model()
history = model.fit(X_train, Y_train, epochs=50,batch_size=None,validation_split=0.2, verbose=False)
history = model.fit(X_train, Y_train, epochs=50,batch_size=None,validation_split=0.2, verbose=False)
plotting_train_metrics(history, save=False, name='fig-2.png')
Train max accuracy = 99.69 % <--> Train max val_accuracy = 88.76 % Train max loss = 1.87 % <--> Train max val_loss = 51.36 %
del model
model=reset_model()
compile_model()
history = model.fit(X_train, Y_train, epochs=50,batch_size=256, validation_split=0.2, verbose=False)
history = model.fit(X_train, Y_train, epochs=50,batch_size=256, validation_split=0.2, verbose=False)
plotting_train_metrics(history, save=False, name='fig-3.png')
Train max accuracy = 91.91 % <--> Train max val_accuracy = 87.98 % Train max loss = 23.31 % <--> Train max val_loss = 33.91 %
del model
model=reset_model()
compile_model()
history = model.fit(X_train, Y_train, epochs=50,batch_size=None, validation_data=(X_train_validate,Y_train_validate), verbose=False )
history = model.fit(X_train, Y_train, epochs=50,batch_size=None,
validation_data=(X_train_validate,Y_train_validate), verbose=False )
plotting_train_metrics(history, save=False, name='fig-4.png')
Train max accuracy = 99.70 % <--> Train max val_accuracy = 89.11 % Train max loss = 1.90 % <--> Train max val_loss = 51.17 %
del model
model=reset_model()
compile_model()
history = model.fit(X_train, Y_train, epochs=50,batch_size=256, validation_data=(X_train_validate,Y_train_validate), verbose=True )
history = model.fit(X_train, Y_train, epochs=50,batch_size=256,
validation_data=(X_train_validate,Y_train_validate), verbose=False )
plotting_train_metrics(history, save=False, name='fig-5.png')
Train max accuracy = 92.24 % <--> Train max val_accuracy = 88.26 % Train max loss = 22.32 % <--> Train max val_loss = 32.53 %
del model
model=reset_model()
compile_model()
history = model.fit(X_train, Y_train, epochs=100,batch_size=256, validation_data=(X_train_validate,Y_train_validate), verbose=False )
history = model.fit(X_train, Y_train, epochs=256,batch_size=512,
validation_data=(X_train_validate,Y_train_validate), verbose=False )
plotting_train_metrics(history, save=False, name='fig-6.png')
Train max accuracy = 97.17 % <--> Train max val_accuracy = 89.17 % Train max loss = 10.15 % <--> Train max val_loss = 35.06 %
del model
model=reset_model()
compile_model()
history = model.fit(X_train, Y_train, epochs=50,batch_size=256, validation_data=(X_train_validate,Y_train_validate), verbose=True )
history = model.fit(X_train, Y_train, epochs=50,batch_size=256,
validation_data=(X_train_validate,Y_train_validate), verbose=False )
history_dict = history.history
print(history_dict.keys())
dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
plotting_train_metrics(history, save=False, name='best-5.png')
Train max accuracy = 92.12 % <--> Train max val_accuracy = 88.22 % Train max loss = 22.81 % <--> Train max val_loss = 32.54 %
model.summary()
Model: "sequential_6" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_18 (Dense) multiple 200960 _________________________________________________________________ dense_19 (Dense) multiple 32896 _________________________________________________________________ dense_20 (Dense) multiple 1290 ================================================================= Total params: 235,146 Trainable params: 235,146 Non-trainable params: 0 _________________________________________________________________
compare how the model performs on the test dataset:
results = model.evaluate(X_test, Y_test, verbose=True)
print('test_loss, test_acc', results)
print('test_accuracy = {t1:3.2f} %'.format(t1=results[1]*100.0))
print('test_loss = {t1:3.2f} %'.format(t1=results[0]*100.0))
313/313 [==============================] - 1s 2ms/step - loss: 0.3567 - accuracy: 0.8749 test_loss, test_acc [0.35673987865448, 0.8748999834060669] test_accuracy = 87.49 % test_loss = 35.67 %
# saving the model
path = './results'
model_name = 'mnist_fashion.h5'
model_path = os.path.join(path, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
Saved trained model at ./results/mnist_fashion.h5
del model
model = tf.keras.models.load_model(model_path)
model.summary()
Model: "sequential_6" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_18 (Dense) multiple 200960 _________________________________________________________________ dense_19 (Dense) multiple 32896 _________________________________________________________________ dense_20 (Dense) multiple 1290 ================================================================= Total params: 235,146 Trainable params: 235,146 Non-trainable params: 0 _________________________________________________________________
compare how the model performs on the test dataset:
results = model.evaluate(X_test, Y_test, verbose=True)
print('test_loss, test_acc', results)
print('test_accuracy = {t1:3.2f} %'.format(t1=results[1]*100.0))
print('test_loss = {t1:3.2f} %'.format(t1=results[0]*100.0))
313/313 [==============================] - 1s 2ms/step - loss: 0.3567 - accuracy: 0.8749 test_loss, test_acc [0.35673987865448, 0.8748999834060669] test_accuracy = 87.49 % test_loss = 35.67 %
With the model trained, you can use it to make predictions about some images.
predictions = model.predict(X_test, batch_size=None, verbose=False)
print('Shape Prediction :',predictions.shape)
Shape Prediction : (10000, 10)
predictions[12]
array([9.79079234e-06, 1.35234700e-04, 5.43827248e-05, 4.81204603e-02, 1.60205146e-04, 2.44440821e-01, 2.32082001e-05, 6.83973378e-01, 2.25804018e-02, 5.02117539e-04])
print('Argmax :',np.argmax(predictions[12]))
Argmax : 7
Y_test[12]
array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.], dtype=float32)
print('Argmax :',np.argmax(Y_test[12]))
Argmax : 7
targets_names[np.argmax(Y_test[12])]
'Sneaker'
plt.figure(figsize=(6,3))
plt.imshow(X_test[12].reshape(28,28), cmap=plt.cm.binary)
plt.show()
print('validated at = {t:3.2f} %'.format(t= np.max(predictions[12]*100)))
print('predict Class = ', np.argmax(predictions[12]),' - true Class is = ', np.argmax(Y_test[12]))
validated at = 68.40 % predict Class = 7 - true Class is = 7
sys.path.append('./my_plot_results')
from my_functions_plot import *
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plt.title('img')
plot_image(i, predictions[i], Y_test, X_test, targets_names)
plt.subplot(1,2,2)
plt.title('Class')
plot_value_array(i, predictions[i], Y_test) #test_labels)
plt.show()
Let's plot several images with their predictions. Note that the model can be wrong even when very confident.
# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions[i], Y_test, X_test, targets_names)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions[i], Y_test)
plt.tight_layout()
plt.show()
mistakes_stat(Y_test, predictions, targets_names, board=True)
Label Class | Label Name | Max result | max Class in data | valideted % | |
---|---|---|---|---|---|
0 | 0 | T-shirt/top | 828 | 1000 | 82.8 |
1 | 1 | Trouser | 962 | 1000 | 96.2 |
2 | 2 | Pullover | 813 | 1000 | 81.3 |
3 | 3 | Dress | 895 | 1000 | 89.5 |
4 | 4 | Coat | 773 | 1000 | 77.3 |
5 | 5 | Sandal | 931 | 1000 | 93.1 |
6 | 6 | Shirt | 677 | 1000 | 67.7 |
7 | 7 | Sneaker | 965 | 1000 | 96.5 |
8 | 8 | Bag | 961 | 1000 | 96.1 |
9 | 9 | Ankle boot | 944 | 1000 | 94.4 |
First, this neural network is a basic model.
Despite obtaining an accuracy at 99.46% in training and validation at 99.70% without Overfitting. During real tests, this network only succeeds in detecting 83.64% of the 10,000 images injected in the test.
One of the problems comes from the "Flatten" operation which converts images of dimension (28x28) into a vector of (784) pixels. This leads to loss of information on the images.
In image processing in Deep Learning Supervised, we prefer to use a Convolution network.
A.S.A.P - Philippe Jadoul